PROSIDING

Seminar Nasional Tahunan VII
Hasil Penelitian Perikanan dan Kelautan
Tahun 2010

Jilid III
Teknologi Hasil Perikanan

Jurusan Perikanan, Fakultas Pertanian UGM
Jl. Flora, Bulaksumur, Yogyakarta 55281
Telp/Fax. (0274) 551218
Email : semnaskan_ugm@yahoo.com
Website : www.faperta.ugm.ac.id/semnaskan
EKTRAKSI MINYAK IKAN DARI TROPICAL CATFISH SKALA LABORATORIUM

Lutfi Assadad dan Bagus SB Utomo
Balai Besar Riset Pengolahan Produk dan Bioteknologi Kelautan dan Perikanan

Abstrak

Menipisnya cadangan minyak dan gas bumi mendorong berbagai penelitian dilakukan untuk menemukan sumber energi alternatif baru dan terbarukan. Salah satu sumber energi alternatif tersebut adalah bioenergi yang berasal dari minyak ikan. Berkaitan dengan hal tersebut telah dilakukan penelitian untuk mengetahui potensi produksi minyak ikan dari tropical catfish, yaitu ikan patin (Pangasius sp.) dan lele (Clarias sp.). Kedua jenis ikan ini banyak terdapat di Indonesia serta merupakan komoditas yang dianggap oleh Kementerian Kelautan dan Perikanan untuk dikembangkan. Pada penelitian ini, ekstraksi minyak ikan dilakukan dengan proses pemanasan dan pengerasan menggunakan alat press hidrolik berkekuatan 1,7 kpsi, dilanjutkan dengan proses degumming dan pemisahan antara minyak dan zat-zat pengotor. Hasil penelitian menunjukkan bahwa rendemen minyak ikan yang dihasilkan sebesar 15,91% untuk ikan patin dan 1,22% untuk ikan lele. Hasil ini menunjukkan bahwa ikan patin cukup potensial digunakan sebagai sumber minyak untuk pembuatan bioenergi, tetapi ikan lele tidak cocok untuk sumber minyak karena kandungan minyaknya yang sangat rendah.

Kata kunci: Ikan Lele, Ikan Patin, minyak ikan, tropical catfish

Pengantar

Berdasarkan hal-hal tersebut di atas, diperlukan sebuah penelitian untuk pemanfaatan tropical catfish terkait dengan produksi minyak ikan sebagai salah satu sumber bioenergi.

Tujuan dari penelitian ini yaitu untuk menentukan potensi produksi minyak ikan dari tropical catfish.

Bahan dan Metode

Bahan utama yang diperlukan pada penelitian ini adalah ikan patin (Pangasius sp) berukuran antara 0,8 – 1,2 kg per ekor yang diperoleh dari Ciseng, Bogor dan ikan lele (Clarias sp) berukuran antara 0,2 – 0,3 kg per ekor yang diperoleh dari Darmaga, Bogor.

Alat-alat yang diperlukan meliputi timbangan, baskom, pleu, talenan, gelas ukur, gelas piala, waterbath, corong pisah, corong plastik, kain penyaring, dan alat press hidrolik berkekuatan 1,7 kpsi.

Degumming. Proses ini dilakukan dengan cara menambahkan NaCl 8% ke dalam minyak ikan pada suhu 60°C selama 15 menit. Larutan NaCl yang ditambahkan sebanyak 40% dari volume minyak yang diproses. Selama proses degumming dilakukan pengadukan (Irianto & Giatml, 2009).

Pemisahan minyak. Minyak yang telah dinetralkan selanjutnya dimasukkan ke corong pisah dan dibiarankan selama 15 menit hingga terjadi pemisahan antara lapisan sabun dan minyak. Lapisan sabun terletak pada bagian bawah, sedangkan lapisan minyak terletak pada bagian atas. Lapisan sabun kemudian dibuang. Untuk mempercepat proses pemisahan antara lapisan minyak dan sabun, ditambahkan 50 ml akuard ke dalam campuran sabun dan minyak (Sathivel et al., 2003).

Prosedur kerja tersebut di atas disajikan dalam bentuk diagram alir seperti terlihat pada Gambar 1.

Analisis Data

Penelitian ini menggunakan dua jenis sampel ikan, yaitu ikan patin dan ikan lele dengan jumlah ulangan sebanyak tiga ulangan. Parameter yang diamati berupa kuantitas minyak ikan yang dihasilkan setelah proses pemanasan-engepresan dan degumming. Data yang diperoleh dari penelitian ini dianalisis secara deskriptif.
Gambar 1. Diagram alir produksi minyak ikan dari tropical catfish
Hasil dan Pembahasan

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Jumlah produksi (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>51.271</td>
</tr>
<tr>
<td>2005</td>
<td>69.386</td>
</tr>
<tr>
<td>2006</td>
<td>77.272</td>
</tr>
<tr>
<td>2007</td>
<td>91.735</td>
</tr>
<tr>
<td>2008</td>
<td>108.200</td>
</tr>
</tbody>
</table>

Tabel 1. Produksi ikan lele 2004 - 2008

<table>
<thead>
<tr>
<th>Patin (Pangasius sp.)</th>
<th>Lele (Clarias sp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19,9 **</td>
<td>0,95 ***</td>
</tr>
<tr>
<td>6,8 ***</td>
<td>2,3 - 3,5 ***</td>
</tr>
<tr>
<td>9,3 - 9,61 ****</td>
<td>0,6 - 2,85 ****</td>
</tr>
</tbody>
</table>

Tabel 2. Kadar lemak ikan patin dan lele (%)

Berdasarkan Tabel 2 tersebut di atas, dapat dilihat bahwa kandungan lemak masing-masing ikan bervariasi antara satu sumber dengan sumber yang lain. Adanya perbedaan kadar lemak ini disebabkan oleh perbedaan spesies, jenis kelamin, ukuran, umur, siklus bercelul (tingkat kematangan gonad), lokasi geografis, pakan, dan musim (Elsabeth, 1992).

Minyak kasar diperoleh setelah dipisahkan dari air melalui proses pengendapan di corong pisah. Adapun proses degumming dilakukan untuk memurnikan minyak ikan kasar, sehingga diperoleh minyak ikan yang lebih murni. Data rendemen minyak ikan yang dihasilkan setelah proses pemanasan-pengepresan dan degumming disajikan pada gambar 3.

Gambar 3. Rendemen minyak ikan patin dan lele

Kesimpulan

Hasil penelitian menunjukkan bahwa rendemen minyak ikan yang dihasilkan sebesar 15,91% untuk ikan patin dan 1,22% untuk ikan lele. Hasil ini tidak berbeda jauh dan berada dalam kisaran kandungan lemak yang dimiliki oleh kedua jenis ikan yaitu sebesar 8,3 – 19,9% untuk ikan patin dan 0,95 – 3,5% untuk ikan lele. Berdasarkan hal tersebut, ikan patin lebih berpotensi untuk menghasilkan minyak ikan.
Daftar Pustaka

